On sequences (γk) and (βk) in regular graphs
نویسندگان
چکیده
For an integer k ≥ 1 and a graph G = (V,E), a set S of V is k-independent if ∆(S) < k and k-dominating if every vertex in V \S has at least k neighbors in S. The k-independence number βk(G) is the maximum cardinality of a k-independent set and the k-dominating number is the minimum cardinality of a k-dominating set of G. Since every kindependent set is (k + 1)-independent and every (k + 1)-dominating set is k-dominating, the sequences (βk) and (γk) are weakly increasing. In this paper we investigate the following questions for some special regular graphs: Which regular graphs have the two sequences (βk) and (γk) strictly increasing? RÉSUMÉ. Pour un entier k ≥ 1 et un graphe G = (V,E), un ensemble S de V est kindépendant si ∆(S) < k et k-dominant si tout sommet de V \S a au moins k voisins dans S. Le nombre de k-indépendance βk(G) est la cardinalité maximum d’un ensemble k-indépendant et le nombre de k-domination est la cardinalité minimum d’un ensemble k-dominant deG.Comme tout ensemble k-indépendant est (k + 1)-indépendant et tout ensemble (k + 1)-dominant est k-dominant, les séquences (βk) et (γk) sont faiblement croissantes. Dans cet article nous étudions pour certaines classes de graphes réguliers la question suivante : Quels sont les graphes réguliers ayant les deux séquences (βk) et (γk) strictement croissantes?
منابع مشابه
A Coding Theory Bound and Zero-Sum Square Matrices
For a code C = C(n,M) the level k code of C, denoted Ck, is the set of all vectors resulting from a linear combination of precisely k distinct codewords of C. We prove that if k is any positive integer divisible by 8, and n = γk, M = βk ≥ 2k then there is a codeword in Ck whose weight is either 0 or at most n/2− n( 1 8γ − 6 (4β−2)2 ) + 1. In particular, if γ < (4β − 2) /48 then there is a codew...
متن کاملD-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملIsometric embeddings of Johnson graphs in Grassmann graphs
Let V be an n-dimensional vector space (4 ≤ n < ∞) and let Gk(V ) be the Grassmannian formed by all k-dimensional subspaces of V . The corresponding Grassmann graph will be denoted by Γk(V ). We describe all isometric embeddings of Johnson graphs J (l,m), 1 < m < l − 1 in Γk(V ), 1 < k < n − 1 (Theorem 4). As a consequence, we get the following: the image of every isometric embedding of J (n, k...
متن کاملGrowth in Product Replacement Graphs of Grigorchuk Groups
The product replacement graph Γk(G) is the graph on the generating k-tuples of a group G, with edges corresponding to Nielsen moves. We prove the exponential growth of product replacement graphs Γk(Gω) of Grigorchuk groups, for k ≥ 5.
متن کاملOn the k-independence number in graphs
For an integer k ≥ 1 and a graph G = (V,E), a subset S of V is kindependent if every vertex in S has at most k − 1 neighbors in S. The k-independent number βk(G) is the maximum cardinality of a kindependent set of G. In this work, we study relations between βk(G), βj(G) and the domination number γ(G) in a graph G where 1 ≤ j < k. Also we give some characterizations of extremal graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stud. Inform. Univ.
دوره 9 شماره
صفحات -
تاریخ انتشار 2011